Number of Solutions to a Quadratic Equation

If a, b, and c are rational numbers and $-\frac{b}{2a}$ exists, then when the **discriminant** $b^2 - 4ac$ is :

	<u>2a</u>			
$Zero \qquad b^2 - 4ac = 0$	Positive $b^2 - 4ac > 0$	Negative $b^2 - 4ac < 0$		
One rational repeated solution,	If $b^2 - 4ac$	Two distinct complex (nonreal		
1	 a. is a perfect square, two distinct rational 	or imaginary) solutions		
namely $-\frac{b}{2a}$	solutions (<i>will factor</i>)	(<i>won't factor</i>) It is prime.		
	b. is not a perfect square,			
(trinomial will factor)	two distinct irrational			
	solutions (<i>won't factor</i>)			
	It is prime.			
$4x^2 - 12x + 9 = 0$	a. $-8q^2 - 2q + 1 = 0$	$2y^2 + 1 = 2y$		
a = 4 b = -12 c = 9	$8q^2 + 2q - 1 = 0$	$2y^2 - 2y + 1 = 0$		
	a = 8 b = 2 c = -1	a = 2 b = -2 c = 1		
$b^2-4ac=0$	$b^2 - 4ac > 0$	$b^2 - 4ac < 0$		
0 440 - 0	$(2)^2 - 4(8)(-1) = 4 + 32 = 36$			
$(-12)^2 - 4(4)(9) = 144 - 144 = 0$	36 > 0 and 36 is a perfect square	$(-2)^2 - 4(2)(1) = 4 - 8 = -4$		
One rational solution: $\left\{\frac{3}{2}\right\}$	Two rational solutions: $\left\{-\frac{1}{2}, \frac{1}{4}\right\}$	Two complex solutions: $\left\{\frac{1+i}{2}, \frac{1-i}{2}\right\}$		
	b. $3z^2 - 8z + 2 = 0$			
	a = 3 b = -8 c = 2			
	$b^2 - 4ac > 0$			
	$(-8)^2 - 4(3)(2) = 64 - 24 = 40$			
	40 > 0, but 40 is not a perfect square			
	Two irrational solutions:			
	$\left\{\frac{4-\sqrt{10}}{3},\frac{4+\sqrt{10}}{3}\right\}$			

TRY:

What is $b^2 - 4ac$? How many	v solutions and	of what type wi	ill there he to	these equations?
vilatis D = 4ac: 110w main	y solutions and	OI WHALLYPE WI	π ιπειε νε ιι	inese equations:

That is a many solutions and of matery permitted be to these equations.						
Equation	а	b	С	$b^2 - 4ac$?	1 or 2 rational/irrational/complex?	
$x^{2}+6x+9=0$	1	6	9	0	1 real solution	
$x^{2} + 10x + 25 = 0$						
$-x^2 + 3x - 4 = 0$	1	-3	4		Two complex solutions	
$x^{2} + 4x - 12 = 0$						
$2x^2 + 3x + 5 = 0$						
$3x^2 + 5x - 1 = 0$						
$12 - 7x + x^2 = 0$	1	-7	12			