Solving Quadratics by Completing the Square

By blending the concept of <u>Completing the Square</u> and the <u>Square Root property</u>, quadratic equations that are not easily factored can now be easily solved.

<u>Solving by Completing the Square</u> $ax^2 + bx + c = 0$

- 1. If a = 1, proceed to step 2. If $a \neq 1$, divide each term of the equation by a before completing the square.
- 2. Write the equation with the variable terms on one side and the constant on the other. That is, move c to the other side.
- 3. Determine $\frac{1}{2}$ of the *b* value. Square that and add it to each side of the equation.
- 4. Write the side with the terms containing the variable as a perfect square $\left(x \frac{1}{2}b\right)or\left(x + \frac{1}{2}b\right)$ and combine terms on the other side.
- 5. Extract the roots using the square root property and solve the resulting linear equations.

Examples – Follow the 5 steps g	given above.
---------------------------------	--------------

 $x^2 - 6x - 7 = 0$ $3x^2 - 6x - 18 = 0$ Divide first by 3 to make a = 1. $x^2 - 6x + _ = 7 + _$ Move the -7 to the right side. $x^2 - 2x - 6 = 0$ $x^2 - 2x + \underline{} = 6 + \underline{}$ Move the 6 to the right side. $\frac{1}{2}(b) = \frac{1}{2}(6) = 3$ and $3^2 = 9$ so add 9 to both sides. $\frac{1}{2}(b) = \frac{1}{2}(2) = 1$ and $1^2 = 1$ so add 1 to both sides. $x^2 - 6x + 9 = 7 + 9$ $(x-3)^2 = 16$ $x^2 - 2x + 1 = 6 + 1$ $(x-1)^2 = 7$ $\sqrt{(x-3)^2} = \sqrt{16}$ Now use the square root property. $\sqrt{(x-1)^2} = \sqrt{7}$ Use the square root property. $x - 3 = \pm 4$ $x-1=\pm\sqrt{7}$ x = 3 + 4 or x = 3 - 4 $x = 1 \pm \sqrt{7}$ x = 7 or x = -1 $\{-1,7\}$ $\{1 - \sqrt{7}, 1 + \sqrt{7}\}$

TRY:

Solve by completing the square:

$$y^2 - 3y - 10 = 0 \qquad 2m^2 - 8m - 20 = 0$$

Sometimes ...

Sometimes		
the solutions are not pretty.	the equations are not pretty.	the solutions are not real.
$4x^2 + 4x - 2 = 0$ Divide by 4.	Put in proper form first.	$x^2 - 4x + 12 = 0$
$x^{2} + x - \frac{1}{2} = 0$	2s(2s+5)-20=18s	$x^2 - 4x + _ = -12 + _$
$x^{2} + x + _ = \frac{1}{2} + _$	$4s^2 + 10s - 20 - 18s = 0$	$x^2 - 4x + 4 = -12 + 4$
$x^{2} + x + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}$	$4s^2 - 8s - 20 = 0$ Divide by 4.	$(x-2)^2 = -8$
$(x + \frac{1}{2})^2 = \frac{3}{4}$	$s^2 - 2s - 5 = 0$	$\sqrt{\left(x-2\right)^2} = \sqrt{-8}$
$\sqrt{(x+\frac{1}{2})^2} = \sqrt{\frac{3}{4}}$	$s^2 - 2s + \= 5 + \$	$x - 2 = \pm \sqrt{-8}$
$x + \frac{1}{2} = \pm \sqrt{\frac{3}{4}}$	$s^{2}-2s+1=5+1$ $(s-1)^{2}=6$	$x = 2 \pm \sqrt{-8}$
$x + \frac{1}{2} = \pm \frac{\sqrt{3}}{2}$	$\sqrt{(s-1)^2} = \sqrt{6}$	$x = 2 \pm i\sqrt{8} \qquad \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}$
$x = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$	$s-1=\pm\sqrt{6}$	$x = 2 \pm 2i\sqrt{2}$
$x = \frac{-1 \pm \sqrt{3}}{2}$	$s = 1 \pm \sqrt{6}$	$\{2-2i\sqrt{2},2+2i\sqrt{2}\}$
$\left\{\frac{-1-\sqrt{3}}{2},\frac{-1+\sqrt{3}}{2}\right\}$	$\{1-\sqrt{6},1+\sqrt{6}\}$	