Lesson 21: Quadratic Equations

Review of Quadratic Equations

Review of the Definition of a Quadratic Equation in One Variable

A quadratic equation in one variable is any second-degree equation that can be written in the form $ax^2 + bx + c = 0$ where *a*, *b*, and *c* are real numbers and $a \neq 0$.

If the equation is in this form, we call it the **standard form** of a quadratic equation in one variable, x.

[*a* cannot be zero. If *a* were zero then the x^2 term would be zero and one would have a first-degree (linear) equation, not a quadratic equation.]

Review of the Zero Product Property

Given real numbers p and q, if pq = 0, then p = 0 or q = 0.

Review of the steps for Solving a Quadratic Equation by Factoring

- Write the quadratic equation in <u>standard form</u> (ax² + bx + c = 0) with the leading coefficient *positive*.
 If the first term is negative, multiply every term of the equation by -1 to **make it positive**.
- 2. Completely factor the quadratic expression.
- 3. Use the zero factor property to <u>set each</u> of the factors containing the variable <u>equal to 0</u>.
- 4. Solve the simpler linear equations.
- 5. <u>Check</u> the solution(s) in the original equation.

Examples:

$x^2 + 6x + 8 = 0$	$w^3 - 25w = 0$
(x+4)(x+2) = 0	w(w-5)(w+5) = 0
x + 4 = 0 or $x + 2 = 0$	w = 0 or $w - 5 = 0$ or $w + 5 = 0$
x = -4 or $x = -2$	w = 0 or $w = 5$ or $w = -5$
{-4,-2}	$\{-5, 0, 5\}$

TRY:

$$x^2 - 11x + 18 = 0$$
 $8x^3 + 4x^2 - 8x - 4 = 0$ Solve by grouping, factor completely.