Factoring a Polynomial of the Form: ax² + bx + c

To Factor any Trinomial

- 1. Factor out the Greatest Common Factor. If there is a common factor, be sure to include it as part of the final factorization.
- 2. Determine if the trinomial $ax^2 + bx + c$ is factorable by finding two numbers m and n such that $m \cdot n = a \cdot c$ and m + n = b (where a is the leading coefficient, c is the last coefficient, and b is the coefficient of the middle term). If m and n do not exist, we conclude that the trinomial will not factor.
- 3. Replace the middle term, bx, by the sum of mx and nx.
- 4. [Factor this four-term polynomial by grouping.] Place parentheses around the first and second terms and around the third and forth terms. Factor out what is common to each pair.
- 5. Factor out the common quantity of each term and place the remaining factors from each term in a second parenthesis.

Note: if $a \cdot c$ is positive, then *m* and *n* both have the same sign as *b*;

if $a \cdot c$ is negative, then *m* and *n* have different signs and the one with the greater absolute value has the same sign as *b*.

Consider:

 $6x^2 + 13x + 6$... find *m* and *n* so that $m \cdot n = a \cdot c$ or +36 and m + n = b or +13, in this case. What two factors when multiplied together equal +36, but when added equal +13? 9 & 4 Now replace the 13x term with mx + nx to get $6x^2 + mx + nx + 6$.

> What does this look like now? $6x^2 + 9x + 4x + 6$ Factor this by grouping into: (2x+3)(3x+2)

Factor: $6y^2 + 17y + 12$ $m \cdot n = 6 \cdot 12 = 72$ and m + n = 17 m = 9 and n = 8

Rewrite: $6y^2 + 9y + 8y + 12$

Factor by grouping:
$$3y(2y+3)+4(2y+3)$$
 Factors: $(2y+3)(3y+4)$

Factor:
$$6y^2 - y - 12$$
 $m \cdot n = 6 \cdot (-12) = -72$ and $m + n = -1$ $m = -9$ and $n = 8$
Rewrite: $6y^2 - 9y + 8y - 12$
Factor by grouping: $3y(2y-3) + 4(2y-3)$ Factors: $(2y-3)(3y+4)$

TRY:

$$4x^2 + 11x + 6$$

 $2y^2 + 3y - 2$

 $8x^2 - 14x + 3$

 $7y^2 - 17y + 6$