Quick Review of Exponent Rules

Review: Think about the following: a^3 What does it mean? In the **exponential** expression a^3 (read "a to the third power"), **a** is called the **base** and **3** is called the **exponent**.

Definition: If *a* is a nonzero real number and *n* is a positive integer, then $a^n = a \cdot a \cdot a \cdot ... \cdot a$

$$2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$$

TRY: 4^3

Be careful: Expressions of the form $(-2)^4$ and -2^4

These expressions are not always equal.

$$(-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2) = 16$$

The placement of the () makes a difference.
 $-2^4 = -2 \cdot 2 \cdot 2 \cdot 2 = -16$

TRY: $(-3)^2$ and -3^2

Product Property for Exponents

If *m* and *n* are integers and $a \neq 0$, then, $a^m \cdot a^n = a^{m+n}$

i.e. When multiplying expressions with **like bases**, add the exponents to get the exponent of the common base. If the base is a number, remember NOT to multiply the base.

$$3^4 \bullet 3^2 = 3^{4+2} = 3^6 = 729 \qquad \qquad -2^2 y^2 \bullet 5y^4 = -20y^6$$

Since the bases are different in $x^4 \cdot y^2 = x^4 y^2$, the factors cannot be combined.

TRY:

$$\therefore \qquad 2^3 \bullet 2^4 \qquad \qquad x^5 \bullet 5x^7 \qquad \qquad 4x^3 \bullet 5x$$

Power Property of Exponents

If *m* and *n* are any integers and $a \neq 0$, then $(a^m)^n = a^{m \cdot n}$ i.e. A power to a power is found by multiplying the exponents.

$$(2^{3})^{2} = 2^{3 \cdot 2} = 2^{6} = 64 \qquad (2x^{2})^{4} = 2^{1 \cdot 4}x^{2 \cdot 4} = 2^{4}x^{8} = 16x^{8} \qquad \frac{(3a^{2})^{3}}{(6a^{3})^{2}} = \frac{3^{3}a^{6}}{6^{2}a^{6}} = \frac{3^{3}}{6^{2}} = \frac{27}{36} = \frac{3}{4}$$

CAREFUL – do not reduce until after the power rule is applied!!

TRY: $(a^2b^2)^2$ $(2x^4y^2)^3$ $(2x^4)^3(y^2)^4$

Power of a Product Property of Exponents

- If *a* and *b* are nonzero real numbers and *n* is any integer, then $(ab)^n = a^n b^n$
- i.e. When a group of factors is raised to a power, raise each of the **factors** in the group to this power. **WARNING**:

 $(xy)^5 = x^5y^5$ and $(2ab)^4 = 2^4a^4b^4$ but $(2+3)^3 \neq 2^3 + 3^3$ because 2 and 3 are terms, NOT factors! $(2+3)^3 = (5)^3$

$$(-2x)^2 = (-2)^2(x)^2 = 4x^2$$
 This is different than $-2^2x^2 = -4x^2$

TRY:
$$(3y)^3$$
 $(-3y)^3$ $-(3y)^3$

$$4(3y)^3$$
 $-2(-3y)^3$ $-(2xy)^3$

Quotient Properties of Exponents

If *m* and *n* are any integers with
$$m > n$$
 and $b \neq 0$, then $\frac{b^m}{b^n} = b^{m-n}$ and $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

To divide expressions with like bases, subtract the exponent of the denominator from the exponent of the numerator to get the exponent of the common base in the quotient.

2

$$\frac{a^5}{a^2} = a^{5-2} = a^3 \qquad \qquad \left(\frac{x}{y^4}\right)^3 = \frac{x^3}{y^{12}}$$

TRY:
$$\frac{3^6}{3^4}$$
 $\frac{a^7}{a^4}$ $\left(\frac{6}{7}\right)^2$

TRY: A Quick Review

•	
1) 6 ²	16) (–1) ⁵
2) 7 ²	17) 10 ³
3) 3 ²	18) (-3) ²
4) 5 ²	19) –1 ⁶
5) 9 ²	20) 12 ²
6) 2 ³	21) 2 ⁴
7) _3 ²	22) 8 ⁰
8) 8 ²	23) (_4) ²
9) 6 ⁰	24) 11 ²
10) 10 ²	25) –7 ²
11) 1 ⁵	26) (₋ 2) ³
12) –5 ²	27) 4 ²
13) 3 ³	28) –3 ²
14) (–2) ²	29) 12 ⁰
15) 2 ³	30) –6 ²