Lesson 07: Inequality, Other Numbers, Review

Inequality Signs, Other Numbers

Inequality Signs

Inequality signs are used to indicate the relationship of one number or value to another.

5 is less than 8 written 5 < 8-4 is greater than -6 written -4 > -6-2 is less than or equal to 3 written $-2 \le 3$ 25 is greater than or equal to 20+5 written $25 \ge (20+5)$ 6 is not equal to 5 written $6 \ne 5$

TRY: Indicate if the following statements are true or false.

17	<	25	True or False	36 >	39	True or False
(5 + 3)	≤	(3+5)	True or False	(14−6) ≥	(13 – 2)	True or False

Use the < or > symbol to make each statement true.

(5+6-3)	 25	36	(27 – 9 + 10)
17	 (25–9)	36	(39–2)

Other Numbers

So far, three types of numbers, found on the number line have been defined: Whole numbers, Natural numbers, and Integers. Three more types of numbers need to be defined.

- DEFINITION: A **rational number** is any number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. In other words, fractions such as $\frac{4}{9}$ and $\frac{13}{5}$ are rational numbers.
- DEFINITION: **Irrational Numbers** are numbers that cannot be written as the quotient of two integers. When written in decimal form, an irrational number is a nonrepeating, nonterminating decimal.

The most common irrational number one uses is *pi*, π .

Definition: The Rational and Irrational numbers form the set of **Real Numbers**.

Rational and Irrational numbers, together, compose the Real Number Line: -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

The Number line extends from negative infinity to positive infinity. The infinity symbol is: ∞ .

Properties of Real Numbers

Property Name	Property form	Example
If a and b are real numbers, then		· · ·
Commutative property of Addition - The order of two numbers around the addition sign does not affect the sum.	a+b=b+a	5+4=4+5
Commutative property of Multiplication - The order of two numbers around the multiplication sign does not affect the product.	$a \cdot b = b \cdot a$	$5 \cdot 4 = 4 \cdot 5$

If <i>a</i> , <i>b</i> , and <i>c</i> are real numbers, then		
Associative property of Addition - The way in which several whole numbers are grouped when they are added, does not affect the final	(a+b)+c=a+(b+c)	(3+4)+5=3+(4+5)
sum.		
Associative property of Multiplication		
 The way in which several whole numbers are grouped when they 	(ab)c = a(bc)	$(3 \cdot 4) \cdot 5 = 3 \cdot (4 \cdot 5)$
are multiplied, does not affect the final product.		

If <i>a</i> is a real number, then			
Identity property of Addition			
 When 0 is added to any number, 			
the sum is 'identical' to the original	a + 0 = 0 + a = a	4 + 0 = 0 + 4 = 4	
number.	a+0=0+a=a	4+0=0+4=4	
0 is the identity element for addition; it is			
also called the additive identity.			
Identity property of Multiplication			
 When any number is multiplied by 			
1, the product is 'identical' to the	a 1 – 1 a – a	2 1 - 1 2 - 2	
original number.	$a \cdot 1 \equiv 1 \cdot a \equiv a$	$3 \cdot 1 = 1 \cdot 3 = 3$	
1 is the identity element for multiplication;			
it is also called the multiplicative identity.			

If a and b are real numbers, then		
Inverse property of Addition		
 The sum of a number and its 		
additive inverse is zero (the identity	a + (a) = a + a = 0	5 + (-5) = -5 + 5 = 0
element for addition).	u + (-a) = -a + a = 0	3+(-3)=-3+3=0
The additive inverse of a is $-a$.		
The additive inverse of $-a$ is a .		
Inverse property of Multiplication		
 Multiplying a number and its 		
reciprocal (its multiplicative	1 1	1 1
inverse) gives 1 (the identity	$b \cdot \frac{1}{a} = \frac{1}{a} \cdot b = 1$ when $b \neq 0$	$3 \cdot \frac{1}{2} = \frac{1}{2} \cdot 3 = 1$
element for multiplication).	b b	3 3
π_{b}		
h = a		

If a , b , and c are real numbers, then		
Distributive property of Multiplication over		
Addition		
 To distribute a factor over a sum of two numbers within parentheses, multiply the factor by each number inside the parentheses then add the products. The Distributive property also works over Subtraction 	a(b+c) = ab + ac a(b-c) = ab - ac (b+c)a = ba + ca (b-c)a = ba - ca	$7(5+3) = 7 \cdot 5 + 7 \cdot 3$ $7(5-3) = 7 \cdot 5 - 7 \cdot 3$ $(7+2)3 = 7 \cdot 3 + 2 \cdot 3$ $(7-2)3 = 7 \cdot 3 - 2 \cdot 3$

TRY: What is the identity element for addition? What is the identity element for multiplication?

What is the additive inverse of -5?

What is the reciprocal of
$$\frac{3}{5}$$
?

Sometimes one must use the distributive property before combining like terms.

 $\begin{array}{ll} 3(x^2+8)-2(x^2-5) & \mbox{Use the Distributive Property} \\ 3x^2+24-2x^2+10 & \mbox{Did you distribute the - with the -5 to get +10?} \\ & \mbox{This is one of the most COMMON ERRORS! Be very careful.} \\ x^2+34 & \mbox{Like terms combined.} \end{array}$

TRY: Combine like terms in the following:

$$-4(x+3y) + 5(2x-y) \qquad -4(x-3y) - 5(-2x-y)$$

To solve a linear equation:

- 1. Use the distributive property to remove any parentheses.
- 2. If multiple fractions are present, use the multiplication property of equality and multiply each term of the equation by the LCD. This will eliminate the denominators from the equation.
- 3. Combine any like terms.
- 4. Use the addition (or subtraction) property of equality to move all constants to one side of the equation and all terms with variables to the other side of the equation.
- 5. Use the multiplication or division property of equality to isolate the variable and reveal the solution.
- 6. Check your solution by replacing the variable in the original equation with your solution.

Example: Solve x + 7 = -5 for x.

x + 7 = -5	Use the subtraction property of equality to move the 7 to the right side.
x + 7 - 7 = -5 - 7	Simplify. $x + 7 - 7 = -5 - 7$; $x + 0 = -12$; $x = -12$
x = -12	Check the solution. $-12 + 7 = -5$; $-5 = -5$ is true. The solution set is: $\{-12\}$

If the resulting expression is an equation that is true for some values and not for others, such as x = 5, the equation is called a **conditional equation** and has **only one solution**. The solution set is $\{5\}$.

Example: Solve 8 = g - 3 for g.

8 = g - 3	Use the addition property of equality to move the -3 to the left side.
8 + 3 = g - 3 + 3	Simplify. $8+3 = g-3+3$; $11 = g+0$; $11 = g$
11 = g	Check the solution. $8 = 11 - 3$; $8 = 8$ is true. The solution set is: $\{11\}$

Example: Solve x + 7 = 4 + x + 3 for x.

x + 7 = 4 + x + 3	Combine like terms on the right.
	Use the subtraction property of equality to move the variable to the left side and 7 to the
x + 7 = x + 7	right. $x - x + 7 - 7 = x - x + 7 - 7$
0 = 0	The statement is TRUE. Therefore the statement is an IDENTITY and the solution set is the
	set of all real numbers. The solution set is: $\{x \mid x \in REALS\}$

If the variable dropped out of the equation leaving a **true** statement, such as 7 = 7, the equation is called an **identity** and has **all real numbers** as its solution. The solution set is {all Reals}.

Example: Solve x + 7 = x - 5 for x.

x + 7 = x - 5	Use the subtraction property of equality to move the 7 to the right side.
x + 7 - 7 = x - 5 - 7	Simplify. $x + 7 - 7 = x - 5 - 7$; $x = x - 12$; now move the x: $x - x = x - x - 12$
0 = -12	This statement is FALSE. Therefore there is NO solution. The result is the empty set: $arnothing$

If the variable dropped out of the equation leaving a **false** statement, such as 8 = -3, the equation is called a **contradiction** and has **no solution**. The solution set is the **empty set**, \emptyset .

TRY: Solve x+9 = -7 for x. Solve 16 = x-4 for x.

Example: Solve 5x = 2x - 12 for x.

5x = 2x - 12	Use the subtraction property of equality to move the $2x$ to the left side to get the
5x - 2x = 2x - 2x - 12	variable terms on the same side.
3x = -12	Combine like terms.
3x - 12	Use the division property of equality to divide both sides by 3 to isolate the variable.
$\frac{-3}{3} = \frac{-3}{3}$	
x = -4	Simplify.
	Check the solution. $5(-4) = 2(-4) - 12$; $-20 = -8 - 12$; $-20 = -20$ is true. The
	solution is {-4}

Example: Solve $\frac{2}{5}x - 7 = 9$ for x.

5	
$\frac{2}{5}x - 7 = 9$	Use the addition property of equality to move the -7 to the right side to isolate the variable term.
$\frac{2}{5}x - 7 + 7 = 9 + 7$	
$\frac{2}{5}x = 16$ $\frac{5}{2} \cdot \frac{2}{5}x = \frac{5}{2} \cdot 16$	Combine like terms. Use the multiplication property of equality to multiply both sides by the reciprocal to isolate the variable. Reduce.
$1 \bullet x = 5 \bullet 8$ $x = 40$	Simplify. Check the solution. $\frac{2}{5}(40) - 7 = 9$; $2 \cdot 8 - 7 = 9$; $16 - 7 = 9$; $9 = 9$ is true. The solution is {40}

WARNING – UNDERSTANDING how to solve for the variable is CRITICAL to this course. Be sure you understand these concepts and can successfully solve for the variable.

TRY: Solve each of the following for the variable.

$$3x - 5 = 7$$
 $5 - 6x = -19$

$$\frac{2}{5}x + 7 = 17 \qquad 8x - 6 = 4x + 18$$

$$-3(2x+4) = -10x \qquad \qquad 4(-x-2) = -2(2x+7) - 5$$