Properties of Real Numbers

Property Name	Property form	Example
If a and b are real numbers, then		· · · ·
Commutative property of Addition - The order of two numbers around the addition sign does not affect the sum.	a+b=b+a	5+4=4+5
Commutative property of Multiplication - The order of two numbers around the multiplication sign does not affect the product.	$a \cdot b = b \cdot a$	$5 \cdot 4 = 4 \cdot 5$

If a , b , and c are real numbers, then		
Associative property of Addition - The way in which several whole numbers are grouped when they are added, does not affect the final	(a+b)+c=a+(b+c)	(3+4)+5=3+(4+5)
sum.		
Associative property of Multiplication		
 The way in which several whole numbers are grouped when they 	(ab)c = a(bc)	$(3 \cdot 4) \cdot 5 = 3 \cdot (4 \cdot 5)$
are multiplied, does not affect the final product.		

If <i>a</i> is a real number, then			
Identity property of Addition			
 When 0 is added to any number, 			
the sum is 'identical' to the original	a + 0 = 0 + a = a	4 + 0 = 0 + 4 = 4	
number.	a+0=0+a=a	4+0=0+4=4	
0 is the identity element for addition; it is			
also called the additive identity.			
Identity property of Multiplication			
 When any number is multiplied by 			
1, the product is 'identical' to the	a 1 – 1 a – a	2 1 - 1 2 - 2	
original number.	$a \cdot 1 \equiv 1 \cdot a \equiv a$	$3 \cdot 1 = 1 \cdot 3 = 3$	
1 is the identity element for multiplication;			
it is also called the multiplicative identity.			

If a and b are real numbers, then			
Inverse property of Addition			
 The sum of a number and its 			
additive inverse is zero (the identity	a + (a) = a + a = 0	5 + (-5) = -5 + 5 = 0	
element for addition).	u + (-a) = -a + a = 0	3+(-3)=-3+3=0	
The additive inverse of a is $-a$.			
The additive inverse of $-a$ is a .			
Inverse property of Multiplication			
 Multiplying a number and its 			
reciprocal (its multiplicative	1 1	1 1	
inverse) gives 1 (the identity	$b \cdot \frac{1}{a} = \frac{1}{a} \cdot b = 1$ when $b \neq 0$	$3 \cdot \frac{1}{2} = \frac{1}{2} \cdot 3 = 1$	
element for multiplication).	b b	3 3	
π_{b}			
h = a			

If a , b , and c are real numbers, then		
Distributive property of Multiplication over		
Addition		
 To distribute a factor over a sum of two numbers within parentheses, multiply the factor by each number inside the parentheses then add the products. The Distributive property also works over Subtraction 	a(b+c) = ab + ac a(b-c) = ab - ac (b+c)a = ba + ca (b-c)a = ba - ca	$7(5+3) = 7 \cdot 5 + 7 \cdot 3$ $7(5-3) = 7 \cdot 5 - 7 \cdot 3$ $(7+2)3 = 7 \cdot 3 + 2 \cdot 3$ $(7-2)3 = 7 \cdot 3 - 2 \cdot 3$

TRY: What is the identity element for addition? What is the identity element for multiplication?

What is the additive inverse of -5?

What is the reciprocal of
$$\frac{3}{5}$$
?

Sometimes one must use the distributive property before combining like terms.

 $\begin{array}{ll} 3(x^2+8)-2(x^2-5) & \mbox{Use the Distributive Property} \\ 3x^2+24-2x^2+10 & \mbox{Did you distribute the - with the -5 to get +10?} \\ & \mbox{This is one of the most COMMON ERRORS! Be very careful.} \\ x^2+34 & \mbox{Like terms combined.} \end{array}$

TRY: Combine like terms in the following:

$$-4(x+3y) + 5(2x-y) \qquad -4(x-3y) - 5(-2x-y)$$