Lesson 07: Inequality, Other Numbers, Review

Inequality Signs, Other Numbers

Inequality Signs

Inequality signs are used to indicate the relationship of one number or value to another.

5 is less than 8 written 5 < 8-4 is greater than -6 written -4 > -6-2 is less than or equal to 3 written $-2 \le 3$ 25 is greater than or equal to 20+5 written $25 \ge (20+5)$ 6 is not equal to 5 written $6 \ne 5$

TRY: Indicate if the following statements are true or false.

17	<	25	True or False	36 >	39	True or False
(5 + 3)	≤	(3+5)	True or False	(14−6) ≥	(13 – 2)	True or False

Use the < or > symbol to make each statement true.

(5+6-3)	 25	36	(27-9+10)
17	 (25 – 9)	36	(39–2)

Other Numbers

So far, three types of numbers, found on the number line have been defined: Whole numbers, Natural numbers, and Integers. Three more types of numbers need to be defined.

- DEFINITION: A **rational number** is any number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. In other words, fractions such as $\frac{4}{9}$ and $\frac{13}{5}$ are rational numbers.
- DEFINITION: **Irrational Numbers** are numbers that cannot be written as the quotient of two integers. When written in decimal form, an irrational number is a nonrepeating, nonterminating decimal.

The most common irrational number one uses is *pi*, π .

Definition: The Rational and Irrational numbers form the set of **Real Numbers**.

Rational and Irrational numbers, together, compose the Real Number Line: -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

The Number line extends from negative infinity to positive infinity. The infinity symbol is: ∞ .