Whole Numbers with Exponents

Vocabulary

Base	The number that is the factor in exponential notation.	
	Given 2^3 , the 2 is the base.	
Exponent	The number of times the base is to be multiplied by itself.	
	Given 2^3 , the 3 is the exponent or power.	

$2\cdot 2\cdot 2$ can be written 2^3 and is read "2 t	o the third power"	$2^3 = 8$
3^2 means $3 \cdot 3$ and is read "3 to the second	power"	$3^2 = 9$
1^3 means $1 \cdot 1 \cdot 1$ which equals 1	In fact, the number 1 r	aised to any natural number is 1.
3^0 equals 1	Any whole number , ot	her than 0, raised to the zero power is 1.
	(Reasons for	this will be explained in a future course.)

TRY evaluating the following expressions as quickly as you can.

1 ⁰ =	2°=	3°=	5 [°] =	7 ² =
1 ¹ =	2 ¹ =	3 ¹ =	5 ¹ =	8 ² =
1 ² =	2 ² =	3 ² =	5 ² =	9 ² =
1 ³ =	2 ³ =	3 ³ =	$5^3 = $	10 ² =
1 ⁴ =	2 ⁴ =	4 ⁰ =	6 [°] =	11 ² =
1 ⁵ =	2 ⁵ =	4 ¹ =	6 ¹ =	12 ² =
16=		4 ² =	$6^2 = $	13 ² =

Powers of 10: Exponential notation with 10 as the base.

Place Value: The place values of our number system correspond to the powers of 10.

Standard (numerical) Form:	5,367
Expanded Form:	(5 x 1,000) + (3 x 100) + (6 x 10) + (7 x 1)
Powers of 10 Form:	(5 x 10^3) + (3 x 10^2) + (6 x 10^1) + (7 x 10^0)
Standard (numerical) Form: Expanded Form: Powers of 10 Form:	$\begin{array}{l} 400,012,508 \\ (4 \times 100,000,000) + (1 \times 10,000) + (2 \times 1,000) + (5 \times 100) + (8 \times 1) \\ (4 \times 10^8) & + (1 \times 10^4) & + (2 \times 10^3) & + (5 \times 10^2) + (8 \times 10^0) \end{array}$

Notice how the exponent on the base 10 corresponds to the number of zeros in the place value.

Using Scientific Notation

Rounding a value to one significant digit (rounding to the first place value on the left of the number) and writing the result using powers of 10 is called using **scientific notation**.

Round 485,352,943 to one significant digit and write the result in scientific notation: $500,000,000 = 5 \times 10^8$

TRY: Round 352,943 to one significant digit and write the result in scientific notation: